张兰强 1,2,3曾意 1,2,3吴小虎 4杨金生 1,2[ ... ]饶长辉 1,2,3,*
作者单位
摘要
1 自适应光学全国重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 山东高等技术研究院,山东 济南 250100
Overview: Gravitational waves are spacetime oscillations radiated outward by accelerating mass objects. Significant astronomical events in the universe, such as the merging of massive black holes, emit stronger gravitational waves. Detecting gravitational waves allows for a deeper study of the laws governing celestial bodies and the origins of the universe, making accurate detection crucial. Gravitational wave detection technology utilizes Michelson interferometers to convert the extremely faint spacetime fluctuations caused by gravitational waves into measurable changes in optical path length. Recently, ground-based large Michelson interferometers have achieved direct detection of high-frequency gravitational waves. However, the detection of low-frequency gravitational waves, which is equally important, is not feasible on the ground due to arm length and ground noise issues. This necessitates the construction of ultra-large Michelson interferometers in space for low-frequency gravitational wave detection. Spaceborne gravitational wave detection telescopes play a vital role in collimating bidirectional beams in ultra-long interferometric optical paths in space. The extremely subtle changes in optical path caused by gravitational waves impose high demands for pm-level optical path length stability and below 10?10 level backscattered light in these telescopes. The ultra-high level index requirements exceed the precision limits of current ground testing techniques for telescopes. To ensure that spaceborne telescopes maintain their ultra-high design performance in the orbital environment, developing testing and evaluation techniques for these key indicators is a crucial prerequisite for the success of the space gravitational wave detection program. This paper provides an overview of the development of spaceborne gravitational wave detection telescopes, both domestically and internationally. It focuses on the current status and some test results of optical path length stability and backscattered light testing of telescopes under development, as well as further testing plans, providing a reference for the testing and evaluation of Chinese space gravitational wave detection space-borne telescopes.
空间引力波探测 星载望远镜 地面测试 光程稳定性 后向杂散光 space gravitational wave detection spaceborne telescope ground test optical path length stability backscattered light 
光电工程
2024, 51(2): 240027
宋奇林 1,2,3,4李杨 1,3,4周子夜 1,3,4肖亚维 1,2,3,4[ ... ]饶长辉 1,2,3,4
作者单位
摘要
1 自适应光学全国重点实验室,四川 成都 610209
2 中国科学院大学,北京 100049
3 中国科学院光电技术研究所,四川 成都 610209
4 中国科学院自适应光学重点实验室,四川 成都 610209
Overview: Since the groundbreaking discovery of gravitational waves, the scientific community has fervently pursued the exploration of low-frequency gravitational waves to glean deeper insights into the cosmos. The inherent limitations of ground-based conditions, however, pose formidable challenges for detectors in capturing gravitational waves below the 1 Hz threshold. Consequently, the imperative has shifted toward the deployment of space-based gravitational wave detectors as the paramount solution for effective low-frequency gravitational wave detection. At the crux of space-based gravitational wave detection lies the pivotal role of spaceborne telescopes. Given the expansive transmission distances spanning magnitudes of 109 m between celestial constellations, the demand for nanoradian-level precision in telescope pointing accuracy becomes non-negotiable. The concomitant necessity for high-precision measurements and calibration emerges as a prerequisite for achieving the exacting standards of pointing accuracy in spaceborne telescopes dedicated to gravitational wave detection. To ameliorate the deleterious effects of pointing deviations on gravitational wave detection, this study strategically optimizes key parameters, including microlens structures, detector selection, and algorithmic frameworks, thereby achieving a breakthrough in high-precision pointing deviation measurements. Leveraging a low-density microlens array with extended sub-aperture focal lengths enhances the spatial scale of the light spot within each sub-aperture. This, coupled with detectors boasting a high signal-to-noise ratio, synergistically elevates the pointing detection accuracy of each discrete lens. Moreover, the paper introduces an innovative, Hartmann principle-based methodology for high-precision pointing deviation measurements, deploying a spatially reused paradigm across multiple sub-apertures. By aggregating measurement results from diverse sub-apertures, the approach effectively mitigates the influence of assorted random errors on measurement accuracy, thereby markedly enhancing the precision of pointing deviation measurements. Illustrating the efficacy of these methodologies, the paper exemplifies their application within the ambit of the "Tianqin Plan" for space-based gravitational wave detection. Employing numerical simulations and factoring in the design parameters of the Hartmann sensor, the study performs a meticulous analysis of pointing deviation measurement accuracy. Comparative analysis between single sub-aperture and sub-aperture correlation reuse technologies reveals a compelling enhancement in measurement accuracy, approximating a sevenfold improvement with the latter. The pointing deviation measurement accuracy achieved through sub-aperture correlation reuse technology is quantified at approximately 18.81 nanoradians. Considering the optical magnification inherent in spaceborne telescopes, estimated at around 30 times, the resultant pointing deviation measurement accuracy reaches an impressive 0.62 nanoradians. This design precision significantly surpasses the stipulated 1 nanoradian accuracy requirement for ground-based gravitational wave pointing deviation measurements. As a prudential measure, the proposed design incorporates a substantial margin to accommodate potential accuracy diminution attributable to external perturbations during empirical testing.
星载望远镜 指向偏差测量 哈特曼 多子孔径空间复用 spaceborne telescope pointing deviation measurement Hartmann multi-subaperture spatial multiplexing 
光电工程
2024, 51(2): 230234
位希雅 1,2,3,4宋奇林 1,2,3杨金生 1,2张兰强 1,2[ ... ]饶长辉 1,2,3,*
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 中国科学院大学电子电气与通信工程学院,北京 100049
空间引力波探测 波前像差 相关算法 space gravitational wave detection wavefront aberration correlation algorithms 
光电工程
2023, 50(11): 230215
Youming Guo 1,2,3,4Kele Chen 1,2,3,4,5Jiahui Zhou 1,2,3,4Zhengdai Li 1,2,3,4[ ... ]Changhui Rao 1,2,3,4,*
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Electronic, Electrical and Commutation Engineering, University of Chinese Academy of Science, Beijing 100049, China
5 National Key Laboratory of Optical Field Manipulation Science and Technology, Chengdu 610209, China
Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology, distinguished by its high optical throughput, reduced optical surfaces, and the incorporation of the deformable mirror. Typically, voice-coil actuators are used, which require additional position sensors, internal control electronics, and cooling systems, leading to a very complex structure. Piezoelectric deformable secondary mirror technologies were proposed to overcome these problems. Recently, a high-order piezoelectric deformable secondary mirror has been developed and installed on the 1.8-m telescope at Lijiang Observatory in China to make it an adaptive telescope. The system consists of a 241-actuator piezoelectric deformable secondary mirror, a 192-sub-aperture Shack-Hartmann wavefront sensor, and a multi-core-based real-time controller. The actuator spacing of the PDSM measures 19.3 mm, equivalent to approximately 12.6 cm when mapped onto the primary mirror, significantly less than the voice-coil-based adaptive telescopes such as LBT, Magellan and VLT. As a result, stellar images with Strehl ratios above 0.49 in the R band have been obtained. To our knowledge, these are the highest R band images captured by an adaptive telescope with deformable secondary mirrors. Here, we report the system description and on-sky performance of this adaptive telescope.
adaptive optics deformable secondary mirror visible imaging 
Opto-Electronic Advances
2023, 6(12): 230039
作者单位
摘要
北京真空电子技术研究所微波电真空器件国家重点实验室, 北京 100015
短毫米波及太赫兹行波管具有宽频宽、大功率、高效率等优点, 在高分辨成像、高速通信、电子对抗等领域有着广泛的应用前景。分析和评述了国内外研究单位的研制水平, 以及作者近年来研发的行波管, 频率覆盖 E波段、W波段、G波段和 Y波段等多个频段。为进一步提升毫米波及太赫兹行波管输出功率, 在新型折叠波导慢波结构、相速再同步技术、周期聚焦磁场 (PCM)聚焦带状电子注、多注集成等方向开展了分析与实验研究, 为器件的性能提升和应用推进提供技术支持。
毫米波 太赫兹 行波管 折叠波导 真空电子放大器 millimeter wave terahertz Traveling Wave Tubes Folding Waveguides vacuum electronic amplifier 
太赫兹科学与电子信息学报
2023, 21(4): 507
作者单位
摘要
天津大学微电子学院,天津 030072
太赫兹(0.1~10 THz)通信技术以其超大带宽资源和超高通信速率等特点成为未来无线通信的关键技术。基于Beckman-Kirchhoff散射理论和射线追踪技术,在太赫兹波段对统一的多射线信道模型进行了修正,该模型结合了直射、反射和散射,并用已有的文献数据对模型进行了验证。此外,使用等功率分配和注水功率分配策略对太赫兹宽带信道容量进行表征。结果表明由于较高的频率选择性,资源分配在开发太赫兹频谱方面极为重要。该研究为太赫兹通信系统的研究与设计提供了参考依据。
大气光学与海洋光学 太赫兹 Beckman-Kirchhoff散射理论 射线追踪 多射线信道 信道容量 
激光与光电子学进展
2022, 59(23): 2301001
作者单位
摘要
天津大学微电子学院,天津 030072
天基光学监测系统是态势感知的重要内容。通过分析星空场景下面目标的光电成像过程,在面目标成像的基础上设计了天基空间目标场景成像仿真系统,并提出了一种根据卫星表面所用材料的双向反射分布函数(BRDF)特性改进二次反射光线抽样范围的方法。根据太阳电池板材料和聚酰亚胺膜两种材料的反射分布,确定了顶角为10°和15°的光线集中区域用于蒙特卡罗抽样。目标成像模块包含实时和高质量两种模式。当选择实时成像模式时,所设计系统直接调用OpenGL管线进行渲染,实现了35 Hz以上的成像频率;当选择高质量成像模式时,采用改进二次抽样的光线追踪方法进行成像,成像效果逼真、阴影显示正确。在星空背景下,使用所设计系统对空间目标的成像和监测进行了仿真,研究结果可为天基光学相机的设计提供一定参考。
成像系统 成像仿真 天基光学系统 蒙特卡罗 实时成像 高质量成像 
激光与光电子学进展
2022, 59(8): 0811004
陈浩 1,2,*魏凌 1,2李恩德 1,2何益 3,4[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院光电技术研究所,自适应光学重点实验室,四川 成都 610209
2 中国科学院大学材料科学与光电子技术学院,北京 100049
3 江苏材料光学重点实验室,江苏 苏州 215163
4 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
从斜率复原波前是夏克-哈特曼波前传感器这一类斜率采样探测器的核心流程。传统的复原算法中,区域法对局部波前的复原效果好,但易受斜率噪声的影响,同时空间分辨率较低;模式法抗噪能力强,但没有精确复原局部波前的能力。本文提出了基于B样条函数的快速复原算法,将波前展开为B样条曲面的线性组合,并将复原问题从斜率最小二乘问题转化为泊松方程,利用斜率的Taylor展开式估计散度,再通过超松驰迭代法进行快速求解。该方法将B样条函数的理论散度积分和实际散度估计分离,可以方便地扩展到不同阶次和不同节点数量的B样条基复原算法中。另外,通过改变散度估计的计算区域,可以灵活控制并平衡算法的局部复原能力和抗噪能力。对变形镜驱动器响应函数的测量实验表明,该方法具有较好的局部复原能力、抗噪能力和任意精度的空间分辨率。
B样条 波前复原 哈特曼波前传感器 B-spline function wavefront reconstruction Hartmann wavefront sensor 
光电工程
2021, 48(2): 200160
作者单位
摘要
中国电子科技集团公司第十二研究所微波电真空器件国家重点实验室, 北京 100015
行波管具有大功率、高增益等优点, 是雷达、电子对抗系统等**装备的核心电子器件。采用一种新型慢波结构 ——非半圆弯曲变形折叠波导, 设计出低电压、高效率、宽带 W波段脉冲行波管, 工作电压 16 kV, 电流125 mA, 6 GHz带宽内输出功率大于 125 W, 增益大于 34 dB, 电子效率与总效率分别大于 6.3%,25.7%。
W波段 折叠波导 低电压 高效率 行波管 W-band Folded Waveguides low voltage high efficiency Traveling -Wave Tubes 
太赫兹科学与电子信息学报
2019, 17(4): 726
王媛媛 1,2,3,4,5,*何益 1,2魏凌 1,2李凌霄 1,2,3[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 温州医科大学附属眼视光医院,浙江 温州 325035
5 温州医科大学,浙江 温州 325035
针对三种不同空间分辨率的双压电片变形镜(Bimorph DM),采用仿真实验分析其对3~35 项Zernike 静态像差和实际人眼(包括疾病人眼)像差的拟合能力。实验表明,Bimorph 变形镜特别适用于校正低阶像差,拟合误差小于0.15,随着空间分辨率的增加,Bimorph 变形镜对Zernike 像差和人眼像差的拟合能力总体表现为增强的趋势,其中,35 单元的Bimorph 变形镜的像差拟合能力最优,对前20 项Zernike 像差的拟合误差稍优于传统分立式压电变形镜。通过对Bimorph 变形镜像差拟合能力的实验分析,为人眼视网膜高分辨率系统的Bimorph 变形镜选型提供了分析方法,也为进一步提升Bimorph 变形镜的像差校正能力奠定了研究基础。
自适应光学 双压电片变形镜 Zernike 像差 像差拟合 视网膜成像 adaptive optics bimorph deformable mirror(DM) Zernike aberrations aberration fitting retina imaging 
光电工程
2018, 45(12): 180103

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!